1. (10 points) Prove that the determinant of a Householder reflector is negative one.
2. (10 points) Let $A \in C^{m \times n}$ with $m \geq n$. Show that $A^{*} A$ is nonsingular if and only if A has full rank.
3. (10 points) Let $\epsilon>0$ be given, $k \ll \min (m, n), A \in R^{m \times n}, C \in R^{m \times k}$, and $B \in R^{k \times n}$. Assume that

$$
\|A-C B\| \leq \epsilon
$$

where B and C have rank k. Further suppose that A is not available, and only B and C are available. Without forming the product of C and B, design an efficient algorithm to compute an approximate reduced QR of A so that the following holds,

$$
\|A-Q R\| \leq \epsilon
$$

where Q is an orthonormal matrix and R is upper triangular.
4. (10 points) Show that if $A \in \mathcal{R}^{n \times n}$ is symmetric, then for $k=1$ to n,

$$
\lambda_{k}(A)=\max _{\operatorname{dim}(S)=k} \min _{\mathbf{0} \neq \mathbf{y} \in S} \frac{\mathbf{y}^{T} A \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}}
$$

where S is a subspace of \mathcal{R}^{n}, and $\lambda_{k}(A)$ designates the k th largest eigenvalue of A so that these eigenvalues are ordered,

$$
\lambda_{n}(A) \leq \cdots \leq \lambda_{2}(A) \leq \lambda_{1}(A)
$$

5. Let $A \in \mathcal{C}^{m \times n}, \operatorname{rank}(A)=r$, and $\mathbf{b} \in \mathcal{C}^{m}$, and consider the system $A \mathbf{x}=\mathbf{b}$ with unknown $\mathbf{x} \in \mathcal{C}^{n}$. Making no assumption about the relative sizes of n and m, we formulate the following least-squares problem:
of all the $\boldsymbol{x} \in \mathcal{C}^{n}$ that minimizes $\|\boldsymbol{b}-A \boldsymbol{x}\|_{2}$, find the one for which $\|\boldsymbol{x}\|_{2}$ is minimized.
(a) (5 points) Show that the set Γ of all minimizers of the least-squares function is a closed convex set:

$$
\Gamma=\left\{\mathbf{x} \in \mathcal{C}^{n}:\|A \mathbf{x}-\mathbf{b}\|_{2}=\min _{\mathbf{v} \in \mathcal{C}^{n}}\|A \mathbf{v}-\mathbf{b}\|_{2}\right\}
$$

(b) (5 points) Show that the minimum-norm element in Γ is unique.
(c) (10 points) Show that the minimum norm solution is $\mathbf{x}=A^{+} \mathbf{b}=V \Sigma^{+} U^{*} \mathbf{b}$, where $A=U \Sigma V^{*}$, and Σ^{+}is the pseudo-inverse of Σ.
6. Consider the following linear system,

$$
\begin{equation*}
A \mathbf{x}=F, \tag{1}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{cccccc}
2 & -1 & 0 & \cdots & \cdots & 0 \\
-1 & 2 & -1 & 0 & \cdots & 0 \\
0 & -1 & 2 & -1 & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\cdots & \cdots & 0 & -1 & 2 & -1 \\
\cdots & \cdots & \cdots & 0 & -1 & 2
\end{array}\right]
$$

(a) (5 points) Prove that the $n \times n$ tridiagonal matrix A is symmetric, positive definite (SPD).
(b) (5 points) Let B be a tridiagonal SPD matrix in the form of the matrix A. Prove that the Cholesky factor L of B has nonzero entries only along the main diagonal and the sub-diagonal lines, where $B=L L^{t}$. Give the formula for L.
(c) (10 points) Design an $O(n)$ algorithm to solve the linear system $A \mathbf{x}=F$.
7. Consider the following integration formula,

$$
\begin{equation*}
u(x)=\int_{0}^{1} G(x, y) f(y) d y \tag{2}
\end{equation*}
$$

where $f \in C[0,1]$ and $G(x, y)$ is given by

$$
G(x, y)= \begin{cases}y(1-x) & \text { if } 0 \leq y \leq x \tag{3}\\ x(1-y) & \text { if } x \leq y \leq 1\end{cases}
$$

Partition $[0,1]$ into $n+1$ equal subintervals with mesh size $h=\frac{1}{n+1}: x_{j}=j * h$, $\hat{u}_{j} \approx u_{j}=u\left(x_{j}\right)$ for $0 \leq j \leq n+1$. We also introduce the following vector notation $U=\left(u_{0}, u_{1}, u_{2}, \cdots, u_{n}, u_{n}\right)^{t}$, and $F=\left(f_{0}, f_{1}, f_{2}, \cdots, f_{n}\right)^{t}$, and $\hat{U}=\left(\hat{u}_{0}, \hat{u}_{1}, \cdots, \hat{u}_{n}\right)^{t}$.
(a) (10 points) To evaluate the vector \hat{U}, we may approximate this integral formula (2) by the Riemann sum based on the above uniform partition,

$$
\hat{u}_{i}=\sum_{j=0}^{n} G\left(x_{i}, y_{j}\right) f\left(y_{j}\right) h,
$$

which will lead to a matrix-vector product $\hat{U}=\hat{G} F$ in terms of a matrix \hat{G} defined by

$$
\hat{G}=\left(h * G\left(x_{i}, y_{j}\right)\right)_{0 \leq i \leq n, 0 \leq j \leq n}
$$

and the vector F. Write down this matrix-vector product to obtain the vector \hat{U} from the Riemann sum. Show that the complexity of this matrix-vector product is $O\left(n^{2}\right)$.
(b) (10 points) Based on the above uniform partition, use the structure of the Green's function G to design an $O(n)$ algorithm to compute the vector \hat{U}.

